
  

 Doctoral School on Engineering Sciences 
 Università Politecnica delle Marche 
  

  

Extended summary 
 

KDD Process Design in  

Collaborative and Distributed Environments 

Curriculum in Ingegneria Informatica, Gestionale e dell’Automazione 

 

Author 

Emanuele Storti 

Tutor 

Prof. Claudia Diamantini 

 

Date: 31-01-2012 

  
 

_______________________________________________________________________________________________________________ 

 
Abstract. Knowledge Discovery in Databases (KDD), as well as scientific experimentation in e-
Science, is a complex and computationally intensive process aimed at gaining knowledge from a 
huge set of data. Often performed in distributed settings, KDD projects usually involve a deep 
interaction among heterogeneous tools and several users with specific expertise. Given the high 
complexity of the process, such users need effective support to achieve their goal of knowledge 
extraction. This work presents the Knowledge Discovery in Databases Virtual Mart (KDDVM), a 
user- and knowledge-centric framework aimed at supporting the design of KDD processes in a 
highly distributed and collaborative scenario, in which computational resources and actors dy-
namically interoperate to share and elaborate knowledge. The contribution of the work is two-
fold: firstly, a conceptual systematization of the relevant knowledge is provided, with the aim to 
formalize, through semantic technologies, each element taking part in the design and execution 
of a KDD process, including computational resources, data and actors; secondly, we propose an 
implementation of the framework as an open, modular and extendable Service-Oriented plat-
form, in which several services are available both to perform basic operations of data manipula-
tions and to support more advanced functionalities. Among them, the management of deploy-
ment/activation of computational resources, service discovery and their composition to build 



  

 Doctoral School on Engineering Sciences 
 Università Politecnica delle Marche 
  

  

KDD processes. Since the cooperative design and execution of a distributed KDD process typi-
cally require several skills, both technical and managerial, collaboration can easily become a 
source of complexity if not supported by any kind of coordination. For such reasons, a set of 
functionalities of the platform is specifically addressed to support collaboration within a distrib-
uted team, by providing an environment in which users can work on the same project and share 
processes, results and ideas. 

Keywords. Collaborative technologies, KDD Process, Knowledge Discovery in Databases, 
Process Design 

 
 
 
 
 
 



 Emanuele Storti  
KDD Process Design in Collaborative and Distributed Environments 

 Doctoral School on Engineering Sciences 1   

1 Problem statement and objectives 

The rapid growth of databases in last years asks organizations to deal with issues related 
to the management of large amounts of data, which represent a valuable resource for deci-
sion making. Although technologies for data management/storage are widely available, 
much effort is still needed to provide users with systems for effectively analyzing and un-
derstanding data. We use the term Knowledge Discovery in Databases (KDD) to refer to 
the non-trivial process of extracting interesting, valid and useful patterns from data [1]. As 
a process, it often involves several steps, which may include: selection of a subset of data 
from the whole dataset, data cleaning and transformation, feature extraction, choice of the 
appropriate Data Mining technique for extracting patterns, its configuration and execution, 
evaluation and interpretation of results and deployment of new knowledge to users [2]. Es-
pecially for non-experts, definition and management of a KDD process are themselves 
demanding activities, because they require user to know how to choose the proper tools 
among the plethora of available ones, how to setup them, how to interpret their output. In 
order to manage a KDD process, a team of different experts is usually needed, each of 
which is able to configure only a part of the whole process. Such a team either can belong 
to the same organization or can be a geographically distributed virtual team of experts. 
Hence, integration of distributed users and tools, along with heterogeneity of these latter 
are issues to take into account in order to define effective solutions for the problem at 
hand. Real scenarios for KDD may include not only network organizations, for which dis-
tributed cooperative KDD projects may represent a significant added value, but also the 
support to e-Science processes (e.g. particle physics, earth sciences, and bioinformatics). In 
such a highly distributed environment, in fact, scientists need technologies for a collabora-
tive analysis of data produced by scientific experimentations [3].  

Various systems have been proposed for supporting users in the design and management 
of KDD processes. However, so far, to the best of our knowledge no solution can be 
found both in commercial software and in the Literature to properly face all above men-
tioned challenging issues. About the former, commercial KDD platforms typically provide 
tools for building a KDD process out of a set of algorithms, but users have to manually 
compose the workflow. Often, tools can be executed only locally with little or no actual 
chance for extension/integration with complex support functionalities. Especially in last 
years several work, available in the Literature, faced more advanced topics like effective re-
trieval of processes, specialized support to collaborative process design, specification and 
reuse of common practices for the usage of tools, semi-automatic goal-oriented process 
composition [4, 5], and integrated management of versioning. However, most of such pro-
posals are mostly concerned with large-scale and high-performance issues [6, 7], or focus-
ing mainly on Data Mining phase without considering the KDD process as a whole. Then, 
although many supporting environments have been designed for cooperative work [8], only 
recent ones consider collaboration in KDD, and very few of them with a knowledge repre-
sentation perspective. 

For the above reasons, there is growing need of effective systems for supporting users, 
especially non-experts, in the design of a KDD process, in particular in the localization of 
interesting tools (possibly remotely available and produced by some external organizations 
or research groups), in the choice of the most suitable tools for a given problem, in their 
composition and execution. 

The aim of this work is a systematization of the knowledge involved in the design of 
KDD processes, and the following exploitation in order to build an effective CKDD sys-



 Emanuele Storti  
KDD Process Design in Collaborative and Distributed Environments 

 Doctoral School on Engineering Sciences 2   

tem, i.e. a KDD support system for Collaborative and distributed environments. This work 
represents a substantial revision from a theoretical perspective of a previous work by Dia-
mantini et al. [9], and an extension from an applicative and functional point of view. 

2 Research planning and activities 

Given that a KDD process involves a deep interaction among users and tools in order to 
perform data analysis operations, we recognize four main typologies of resources that must 
be managed by a collaborative KDD platform: computational units, computational processes, data 
and actors. The main contributions of the work are defined as follows. 

Knowledge about each resource is fully described from different levels of abstractions by 
a Knowledge Layer that includes specific languages and descriptors for each of such levels, 
which are interrelated in order to provide machine-readable mappings among them. The 
exploitation of semantic information is one of the key elements of our knowledge-centric ap-
proach, as they provide, at a conceptual level, the needed terminology which the concrete 
level descriptors can refer to. Semantic technologies are widely recognized as the state-of-
the-art solution to explain and formally explicit the meaning of the objects in the domain, 
towards a new generation of systems with advanced intelligent functionalities for collabora-
tion in large heterogeneous, distributed environments. In particular, we refer in this work 
to domain ontologies, which have been designed following a formal methodology and 
quality criteria. Formalism in concepts definition allows to support inferential mechanisms, 
to find non-explicit relations among the ontological concepts. 

The Knowledge Layer provides the data model on which an open and modular Service-
Oriented Architecture is built, which includes both services for KDD and Data Mining 
tasks and support services providing all the needed high-level functionalities. The platform 
is based on Web Service standards, which guarantee interoperability and the possibility to 
integrate several simple services in order to provide more complex functionalities. Among 
them: easy service publishing and sharing, service and process discovery, automatic process 
matchmaking and composition, project team building, collaborative process design and 
versioning. The adoption of service-oriented principles lets users focus on KDD experi-
ments without having to deal with interfaces and message exchange. This enables a high 
flexibility of the system, by allowing to dynamically reconfigure a computational process 
using each time only the services that are actually needed. 

Our focus on knowledge is also to be considered from a user-centric perspective, as one of 
the most important aims of the platform is towards a collaborative dimension. Collabora-
tion among users is tracked and supported at the utmost, by technological solutions that 
help to enable effective communication and coordination. 

3 Analysis and discussion of main results 

3.1 Knowledge Layer 

Purpose of the Knowledge Layer is to provide a systematization of the knowledge involved 
in a KDD process from a generic and theoretical point of view, as well as a detailed de-
scription of the relevant information needed for a concrete Collaborative KDD (CKDD) 
platform. Such formalization regards each kind of resource involved in a KDD process, 
and is based on several points of view: level of abstraction of the resource, role played by 
the resource in a generic KDD process, purpose for which a resource is actually used in the 



 Emanuele Storti  
KDD Process Design in Collaborative and Distributed Environments 

 Doctoral School on Engineering Sciences 3   

KDDVM platform. An overview of the conceptual and concrete levels of the Knowledge 
Layer is shown in Figure 1. 

3.1.1 Computational units 

About computational units, according to different degrees of abstraction we recognize algo-
rithms, tools and services. An algorithm is an abstract prototype of a tool, whereas a tool is an 
implementation of an algorithm in a concrete programming language. A service is a tool 
running on a server, offering its interface through standard Web Service protocols. In this 
way, many services can refer to the same tool, whereas several tools can implement the 
same algorithm. From an informative perspective, this means that all the characteristics de-
fined at one abstraction level are inherited by the lower level(s). Such a loose-coupled ap-
proach enhances modularity and reusability, and supports advanced functionalities for dis-
covery and composition, as will be shown in the following.  

Algorithms are described into KDDONTO, a domain ontology, which also includes in-
formation about the task achieved by the algorithm, the KDD phase in which it is com-
monly used, the search method it implements for achieving its task, performance indices 
like complexity and scalability. Moreover, the I/O interface is described: the data required 
as input and yielded as output, together with the preconditions that such data must satisfy 
in order to be actually used by the tool. 

Since there are many tools available for the same task and they typically have heteroge-
neous interfaces, we manage integration and reuse of such tools by describing them with 
open formats (i.e., XML-based). In such a way the user is relieved of the need to under-
stand the service interface and to prepare data accordingly.  

For KDD tools we adopt KDTML, an XML-based open descriptor, which is aimed at 
annotating a tool through a set of metadata, in order to describe its details in a structured 
fashion, including its interface, the algorithm it implements, its performances. Legacy tools 
produced by third-parties and written in any programming language can be described 
through KDTML in order to allow higher support for sharing and integration.  

In our platform each KDD service is described by an extended-SAWSDL (eSAWSDL), 
i.e. a fully-compatible SAWSDL [10] descriptor with some additional details, namely spe-
cific syntax of I/O data or performance values (e.g., QoS, which depends on the server on 
which it is running, and on the network status), useful to choose the most high-performing 
service for a specific task, or to find a service with a certain interface, in order to support 
process matchmaking or composition. Although each service may be remotely executable, 
a public UDDI registry holds its relevant details: information about I/O interfaces, the al-
gorithm it implements, and the URL of the eSAWSDL descriptor needed for its execution. 

Our infrastructure relies on mappings among levels, such that the descriptor for a tool 
(or a service) refers to KDDONTO to explicit the semantic meaning of its interfaces. In 
the same way, there is a mapping between each descriptor and the specific ontological con-
cept that represents the implemented algorithm. 

3.1.2 Computational process 

Prototype processes are abstract processes composed of algorithms defined in KDDONTO. 
Given that the platform is aimed at supporting process composition and management 
mainly at the concrete level, there is no need to explicitly represent them through a specific 
language. 



 Emanuele Storti  
KDD Process Design in Collaborative and Distributed Environments 

 Doctoral School on Engineering Sciences 4   

 
Figure 1. Overall view of the Knowledge Layer. 

As regards concrete level, process schemas are processes composed of tools or services. In 
this work, however, we take into account only process schemas made of web services: in 
fact, the platform is aimed at distributed computation which requires a Service-Oriented 
approach. Process schemas are internally serialized in an XML-based language, which con-
tains information about web services’ name, eSAWSDLs of the services in the process, 
connections among their input/output interfaces, and the users that are in charge of their 
management. Moreover, the descriptor includes metadata about the whole process, such as 
the creation date/time, the author’s name, textual comments, and the process state, to track 
whether it is still under development or is definitive (i.e., if it can be released).  

Process schemas are then stored into a Process Repository (ProcRep), that arranges them in 
projects. With the aim to support the discovery of process schemas inside the Process Re-
pository, as described in Section 3.2.2, an indexing system has been defined. Such indexing 
model is a lattice, in which each node is a sub-process structure made of web services. The 
link among a node and its parent node means that the sub-process identified by the first 
node extends the one of its parent. Each node, then, can be considered as a cluster of all 
those process schemas in ProcRep that include its structure: in this way an indexing strat-
egy can be defined, that links each node with the corresponding process schemas. 
Such a lattice is generated through a hierarchical clustering technique that, given a reposi-
tory of process schemas represented as graphs, extracts frequent and non-trivial sub-
structures and relations among them, putting at the top of the lattice the most frequent 
sub-structures [11]. 

3.1.3 Data 

As regards data and models we refer to KDDONTO, which besides describing algorithms 
offers also a description of data at the conceptual level, defining data typologies in the con-
text of KDD domain. The Data concepts is further specified in Dataset, Model and Parameter, 
which respectively represent the initial corpus of observation from which to begin a KDD 
process, the schema generated as output by some algorithms and simple parameters used 
for input interface setup. Moreover, a peculiar characteristic of KDDONTO is the intro-



 Emanuele Storti  
KDD Process Design in Collaborative and Distributed Environments 

 Doctoral School on Engineering Sciences 5   

duction of the “part-of” relation, motivated by the need to manage structured data, and to 
express the relation between a complex, compound datum and its subcomponents. 

Such ontological concepts are useful, as already explained, to make explicit the meaning 
of I/O interfaces in KDTML and eSAWSDL, as an effective solution for integration and 
interoperability. 

3.1.4 Actors 

For what concerns actors, we define them in TeamONTO, an ontology aimed at represent-
ing the characteristics of participants in the team, such as their affiliations, their skills about 
business domains or about KDD algorithms and services, their publications, and the previ-
ous projects in which they participated.  

TeamONTO can be considered as an extension of the previous defined knowledge 
bases, as its elements can be put in connection with corresponding concepts in 
KDDONTO (algorithms), UDDI registry (services) and Process Repository (projects), al-
lowing more expressive queries to be performed. For instance, it is possible to search for 
persons from a given organization, which are experts in a “DecisionTreeAlgorithm”, and 
which have already worked in projects about the “e-Health” domain.  

3.2 A collaborative platform for KDD process design 

The main goal of the KDDVM platform is to support users in the complex task of collabo-
ratively designing and executing a KDD process. To this end, KDDVM provides a set of 
support functionalities in the form of web services, which can be accessed both through 
standard SOAP requests and through some clients. Among the services offered by the plat-
form we recognize basic services, which provide single Data Mining and KDD functional-
ities allowing to analyze and transform data and to extract knowledge. Moreover, a set of 
support services is provided for giving both low-level and KDD-specific functionalities to 
different types of users, which are grouped in four categories on the basis of their aims, 
namely deployment, discovery, composition and execution. Besides these KDD-specific support 
services, the platform offers also functionalities enabling cooperative work. Figure 2 shows 
support services together with their mutual interactions.  

Oriented to final users, the platform includes KDDDesigner, a web-based visual tool that 
serves as a whiteboard, where the user designs a process accessing to platform’s support 
functionalities in an integrated fashion. Through the KDDDesigner (Fig. 3), users are en-
abled to collaboratively build a process, by choosing the tools to use, linking them together, 
discussing about design issues, and executing the process.  

3.2.1 Service deployment and publication 

Before using the platform, services have to be published into the UDDI repository, from 
which final users can retrieve the ones useful to solve their problem. For this reason, a set 
of services and consumer-side applications are available for (1) helping users in writing a 
KDTML for the description of a tool, (2) transforming a KDD tool, written by a developer 
in any programming language, into a web service with a standard interface, and generating 
the corresponding eSAWSDL at the same time, for (3) deploying such a service in an ap-
plication server, and (4) publishing it into the common registry. 



 Emanuele Storti  
KDD Process Design in Collaborative and Distributed Environments 

 Doctoral School on Engineering Sciences 6   

 
Figure 2. Interactions among services and clients of the platform.  

Some other services include back-end functionalities for the management of data transfer 
among servers and authentication.  

3.2.2 Service and process discovery 

A fundamental functionality for a distributed platform is the capability of querying re-
positories for discovering suitable resources, both services and processes. 

In order to retrieve a certain service among the others, KDDDesigner interacts with the 
Broker service, which acts as a search engine inside the UDDI registry. Through the Broker, 
a user can look for specific services which satisfy not only syntactic requirements, like hav-
ing a certain name or being published by a certain provider, but also semantic requirements 
by exploiting information available in KDDONTO and in services descriptors. 

Given the conceptual separation in distinct logical layers, it is possible to find services 
implementing specific algorithms: for instance, algorithms useful for a task, or using a cer-
tain method, or executable before/after a given algorithm (see also Sec. 3.2.3). Once some 
algorithms are found in the ontology, the Broker looks inside UDDI registry for services 
implementing them, thus providing the user with accurate and semantically consistent re-
sults. By selecting a service from the result list (right panel in Fig.3), the user can drag it in 
the design board and begin to compose a new process. 

As concerns the discovery of processes, we refer to the Process Repository already de-
scribed in Section 3.1.2. The service devoted to search inside the process repository is the 
ProcBrowser, which is aimed at two main retrieval tasks: 



 Emanuele Storti  
KDD Process Design in Collaborative and Distributed Environments 

 Doctoral School on Engineering Sciences 7   

 
Figure 3. KDDDesigner. 

• process browsing: the activity of browsing the lattice in order to provide the user with a high-
level and expansible representation of all the sub-structures that are defined in the lattice it-
self. The user can either select a sub-structure in order to visualize all the corresponding 
processes stored in the ProcRep, or decide to expand the sub-structure in order to reach 
those at a lower level, which are an extension of the sub-structure at hand; 
• process discovery: the activity of searching in ProcRep those processes which satisfy a set of 
requirements. Discovery can be performed according to both standard search (e.g., proc-
esses having a given service, involving a specific user or category of users) and structure-
based search (e.g., processes including a given sub-process specified by the user). Then, the 
ProcBrowser performs a sub-graph match between the query and the sub-structures at the 
top level in the lattice, checking if the smaller of the two contains the other. If the query 
contains the sub-structure, for each positive match the ProcBrowser evaluates the query 
against children of the related cluster (sub-structure), and so forth. At the end, the query is 
evaluated against the union of all processes belonging to clusters at lowest levels that have 
reported a positive match. The lattice is built by the LatticeGen service, which is also aimed 
to rebuild it when the number of modifications (insert, update and delete) to the repository 
is such that query performances get worse.  

3.2.3 Process composition 

A process can be built connecting two processes together in KDDDesigner, linking an 
output of the first to an input of the second. Nevertheless, some expertise is needed to 
check the correctness of such connection: in fact, the user is supposed to know that such 
data are compatible each other, and that such algorithms can be meaningfully connected. 
For these reasons, when the link between two data is established by the user, the Match-
Maker service is called, to verify whether the data can be actually connected, and if so it 



 Emanuele Storti  
KDD Process Design in Collaborative and Distributed Environments 

 Doctoral School on Engineering Sciences 8   

yields as output the estimated semantic cost of their connection. The check is performed by 
comparing the data being connected, not only syntactically but also semantically, with the 
aim to understand if they are conceptually equivalent, or if the output is a sub-
type/subcomponent of the input: such operation is realized through looking for a path, in-
side KDDONTO, between the input and the output, made of the ontological relations 
“sameAs”, “subClassOf” and “partOf”, and by properly weighting each relation. For a 
match, the evaluation of the cost takes into account also the existence of preconditions on 
the input datum, which can be completely or partially satisfied by the output, and the com-
putational complexity of algorithms. By selecting a connection between two data, the user 
is informed about the cost, in order to provide the user with information about the validity 
of her choice, suggesting which connections are correct and which aren't. Moreover, the 
estimated total cost for a process, or a sub-process, can be evaluated by selecting the whole 
process or a part of it, defining in this case the starting/ending services. The MatchMaker is 
also useful during the service discovery. In fact, by selecting a service (and so its corre-
sponding algorithm), it is possible to search for algorithms that are executable before/after 
the algorithm at hand, and then to look in the UDDI registry for services implementing 
them. Then, by exploiting functions for the evaluation of costs, the Broker is able to return 
a ranked list of useful services. Such functionalities offer an invaluable help during compo-
sition, by supporting naïve users to reduce the search space, and thus helping them to find 
only those services that are compatible with the one at hand. 

To bring support to non-expert users, incapable of choosing proper solutions for their 
goals, the KDDComposer is available in the platform, aimed at generating prototype proc-
esses in a semi-automatic fashion. Through such an application, a user is only asked to pro-
vide a dataset and to specify the task to achieve; by using Artificial Intelligence and plan-
ning techniques and by interfacing with the MatchMaker service, KDDComposer yields a 
list of possible KDD processes. The generated processes are not directly executable be-
cause they are formed of algorithms; their aim is to provide suggestions about possible se-
quences of algorithms that may be exploited to solve the user problem. The composition 
procedure starts from the user task, then the KDDComposer looks inside KDDONTO 
for a set of algorithms which are able to achieve it: for each of them a candidate process is 
created. Iteratively, for each candidate process, the procedure goes on backwards by add-
ing, in the process head, algorithms that can be executed before it, i.e. algorithms with an 
output interface which is compatible with the input interface of the process head. The it-
erative step is executed until a valid process is found, that has an input interface capable to 
elaborate the user dataset. 

This work includes also a preliminary study about the exploitation of a formal coordina-
tion language Reo [12] for representation of processes and their formal verification through 
model checking. In the context of KDD processes, this approach is aimed at the individua-
tion, formalization and formal verification of complex coordination patterns that typically 
appear in distributed experimental processes for the extraction of potentially useful knowl-
edge from data, in order to support their successive reuse during composition. 

3.2.4 Process execution 

A process schema is a workflow of services, which can be executed by means of an engine 
that is able to interpret standard workflow languages (e.g. XPDL, XScufl, BPEL). Although 
processes in KDDDesigner are currently represented in an internal XML format, users can 
export them into standard workflow languages and execute them by means of external en-
gines. Alternatively, their execution can be managed by the WorkFlow Manager (WFM). This 
service extends existing engines in order to interpret semantic annotation and specific 



 Emanuele Storti  
KDD Process Design in Collaborative and Distributed Environments 

 Doctoral School on Engineering Sciences 9   

KDDVM information. At present we have developed a prototype WFM that interprets 
processes written in XPDL. Since the KDDDesigner lets users create a process without 
completely wiring all the services’ interfaces, when the execution of a service needs the 
human intervention (e.g., for parameters setting), the WFM calls the ClientFactory tool. Such 
a tool reads the eSAWSDL and on-the-fly generates a graphical interface showing to the 
user, which has been entrusted with the execution of the service, every service parameter 
plus other information taken from the descriptor. The use of ClientFactory during the 
process execution allows users to design processes at different detail levels. As a matter of 
fact, a team of users can either specify all the details needed to execute the process, or fix 
just the structure of the process, outsourcing the work of parameter tuning to other users 
with more specific skills and expertise. 

3.2.5 Collaborative functionalities 

KDDVM platform provides tools to support team building, versioning and communica-
tion. By exploiting the knowledge coded into TeamONTO it is possible to plan the process 
assigning the management of a specific web service to a certain user, taking into account its 
competencies. To this aim, an Expert Finder service helps users in searching for experts sat-
isfying a set of requirements. For instance, by exploiting inference on both KDDONTO 
and the team ontology, it is possible to look for users which are expert in a specific service, 
in a given class of algorithms, in algorithms useful for a certain task, or which have partici-
pated in similar projects and are available in certain periods. 

Collaboration within a project takes place only if the team members are able to interact 
each other, in order to align their actions towards the shared goal: for this reason, the sys-
tem should allow to discuss design choices and to jointly edit the process. Given that ex-
perts usually cooperate in KDD projects according to their work schedules, a common 
type of communication is asynchronous. Following this approach, many users can collabo-
ratively work on a same KDD project by opening the same process in edit mode, saving 
the process at the end. In order to keep track of how the process is evolving, the platform 
provides ProcVer, a service for process versioning management. KDD projects are fully de-
scribed, inside the Process Repository, through a version tree, in which each node is linked 
to an item in the Repository, i.e. a different version of the same process. In such a way the 
history of versions is available, thus allowing to be aware of possible alternative branches, 
as well as to roll-back to previous versions. 

ProcVer performs the serialization of a process developed by the KDDDesigner into the 
XML format, its storage into the repository and the update of the version tree of the KDD 
project at hand. Moreover, it also supports retrieval functionalities, such as: browsing the 
versions of a given project, traversing the tree and providing the user with metadata about 
each version, and discovery, w.r.t. a given project, of those versions that satisfy some user re-
quirements.  

Besides the comments that can be attached to a process version, a more direct form of 
communication among authors is achieved through a Talk Page, aimed at providing space 
for editors to discuss changes for a specific process. 

4 Conclusion 

In this work we propose a novel framework and platform for supporting the design of 
KDD processes in distributed and collaborative environments. The fundamental features 



 Emanuele Storti  
KDD Process Design in Collaborative and Distributed Environments 

 Doctoral School on Engineering Sciences 10   

of our approach are: (a) the capability to manage various kinds of heterogeneities, like dif-
ferent implementations with different characteristics of the same algorithm, (b) the possi-
bility to easily add functionalities to the system: for instance, the integration of new data 
analysis tools is not limited to applications complying with a certain standard; legacy tools 
are made talk together by wrapping every tool with a standard web service interface, and 
describing the tool’s capabilities and input/output interface by means of ontological con-
cepts; (c) a community-centered attitude, with functionalities for both resource production 
and consumption, facilitating end-users with different skills as well as resource providers 
with different technical and domain specific capabilities. 

What makes KDDVM original with respect to other proposals is the systematic use of 
semantic information, a loosely coupled and layered architecture, a cooperative approach 
and its flexibility. While most solutions focus only on Data Mining or on local KDD sup-
port systems, our proposal is more general and natively conceived for an open, distributed 
and collaborative environment. 

References 

[1] U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, From data mining to knowledge discovery: an over-

view, pp. 1–34, American Association for Artificial Intelligence, Menlo Park, CA, USA, 1996. 
[2] C. Shearer, The crisp-dm model: The new blueprint for data mining, Journal of Data Warehousing, vol. 

5, no. 4, 2000. 
[3] T. Hey S. Tansley, and K. Tolle, Eds., The Fourth Paradigm: Data-Intensive Scientific Discovery, Mi-

crosoft Research, Redmond, Washington, 2009.  
[4] A. Bernstein and M. Dänzer, The next system: Towards true dynamic adaptations of semantic web service 

compositions, in Proceedings of the 4th European conference on The Semantic Web: Research 
and Applications, Berlin, Heidelberg, 2007, ESWC ’07, pp. 739–748, Springer-Verlag. 

[5] M. Žáková, P. Kremen, F. Železný, and N. Lavrac, Automating Knowledge Discovery Workflow 

Composition Through Ontology-Based Planning, IEEE T. Automation Science and Engineering, vol. 
8, no. 2, pp. 253–264, 2011. 

[6] M. Cannataro and D. Talia, The knowledge grid, Commun. ACM, vol.46, pp. 89–93, January 
2003. 

[7] G. Kickinger, J. Hofer, P. Brezany, and A.M. Tjoa, Grid knowledge discovery processes and an archi-

tecture for their composition, in Proc. of IASTED Conference 2004, Innsbruck, Austria, February 
17-19 2004. 

[8] D. De Roure, C. Goble, and R. Stevens, The Design and Realisation of the Virtual Research Envi-

ronment for Social Sharing of Workflows, Future Generation Computer Systems, vol. 25, no. 5, pp. 
561–567, 2009. 

[9] C. Diamantini, D. Potena, and M. Panti, Developing an Open Knowledge Discovery Support System for 

a Network Environment, in Proc. of the 2005 Int. Symp. on Collaborative Technologies and Sys-
tems, Saint Louis, Missouri, USA, pp. 274–281, 2005. 

[10] Semantic annotations for wsdl and xml schema, W3C Recommendation 28 August 2007, 
http://www.w3.org/TR/sawsdl/. 

[11] I. Jonyer, D.J. Cook, and L.B. Holder, Graph-based hierarchical conceptual clustering, J. Mach. Learn. 
Res., vol. 2, pp. 19–43, March 2002. 

[12] F. Arbab, Reo: a channel-based coordination model for component composition, Mathematical. Structures 
in Comp. Sci., vol. 14, no. 3, pp. 329–366, 2004. 


